Please Obey My Plan: How To Optimise Decentralised Self-Adaptive Systems

Veronika Lesch, Christian Krupitzer
University of Würzburg, Germany

Sven Tomforde
University of Kassel, Germany

SelPhyS 2019
Munich, 15th April 2019

descartes.tools
Platooning Coordination

Decentral Planning vs Central Planning

Decentral Planning

- **MAPE**
- **MAPE**
- **MAPE**
- **MAPE**

Central Planning

- **MAPE**
- **MAPE**
- **MAPE**
- **MAPE**

The diagram shows the comparison between Decentral Planning and Central Planning in Platooning Coordination. The Decentral Planning approach is marked as rejected, while the Central Planning approach is accepted.
System Model

Self-adaptive System: Traffic

Coordinated Resource: Platoon

Subsystem: Vehicle

AM_{ext,1}
Objectives

1) Development of a centralised optimisation mechanism that balances conflicting goals and constraints

2) Improving robustness of solution by providing degrees of freedom, alternative solutions and incentives for execution-enforcement

3) Investigation of a subsequently distributed adaptation execution algorithm that controls the application of the plan within a set of autonomous entities by making use of the provided freedom

4) Analyse the relations of autonomic vs. heteronomic decisions of entities on the optimisation procedure

5) Design and implementation of a support process for developers
Platooning Coordination Use Case

- Platooning: Self-driving vehicles in coordinated convoys
- Self-driving vehicles act autonomously
- Individual preferences of the driver
- Environment with specified interaction rules

Decentralised planning
- Collect information about platoons
- Requires vehicle to vehicle communication
- Locally optimised
- Results in conflicts (position in platoon)

Centralised planning
- Intermediary system collects information about vehicles and platoons
- Balances interests of vehicles, platoons, global traffic
- No guarantee that instructions are executed by autonomous vehicles
Challenges – C 1

- Multi-objective central optimisation with constraints
 - Goal: Runtime-applicable heuristic, rather “good enough” solutions than “optimal” ones.
 - Choice of optimiser
 - Time vs optimality
 - Incorporation of constraints
Multi-objective central optimisation with adaptation freedom

- Goal: Provide solutions with alternative realisations and decision freedom for the adaptation execution.
- Definition of ranges of allowed configurations
- Coordination of execution
- Introduction of feedback loop

Central Plan. Decentral Plan.
Challenges – D 1

- Decentralised non-coordinated optimisation
 - Goal: Negotiate solutions in open collections of autonomous entities
 - Prevention of unstable behaviour and oscillations
 - Handle information sub-sets
 - Incorporation of multiple goals
Challenges – D 2

- Decentralised coordinated multiobjective optimisation
 - Goal: Negotiate solutions in open collections of autonomous entities
 - Identification of important aspects
 - Integration of local constraints
 - Incentivation
Distributed global multi-objective optimisation

- Goal: Coupling of global planning and local execution
- Effective coordination of autonomous agents
- Execution enforcement
Wrap-Up

- Two common approaches for optimising self-adaptive systems
 - Decentral planning
 → Local optimal but conflicting decisions may occur
 - Central planning
 → Global optimal but single point of failure, systems may refuse execution of plan

- Hybrid Approach is desired
 - Combines advantages
 - Reduces drawbacks of both extremes

- Challenges to achieve a hybrid approach are identified
- Running example platooning coordination for all challenges
Thank you for your attention

SelPhyS 2019
Munich, 15th April 2019