piwik-script

Intern
    Chair of Computer Science II - Software Engineering

    DNI - Descartes Network Infrastructures Modeling

    DNI is a family of meta-models designed for modeling the performance of communication networks. DNI is tightly related to DML and the main modeling domain are data center networks. A user can model network topology, switches, routers, servers, virtual machines, deployment of software, network protocols, routes, flow-based configuration and other relevant network parts. DNI can be used to model any type of network as it was designed to be as generic as possible. 

    The DNI Meta-model has been designed to support describing the most relevant performance influencing factors that occur in practice while abstracting fine-granular low level protocol details. Instances of the DNI Meta-model (DNI models) are automatically transformed to predictive stochastic models (e.g., product-form queueing networks or stochastic simulation models) by means of model-to-model transformations.

    The DNI consists of the following elements:

    • DNI and miniDNI meta-models – written in Emfatic and Ecore
    • Scripts for generating DNI model instances – written in EOL
    • Set of model-to-model transformations between the meta-models and to selected predictive simulation models (solvers) – written in ETL
    • Default tree editor for specifying the DNI and miniDNI models manually
    • HUTN (Human Usable Textual Notation) text editor for DNI
    • Traffic model extraction library TrafficMSD@Github (full tooling for DNI extraction: coming soon)

    Links:

    • Download meta-models, transformations, and examples: DNI Git repository 
    • Manual that explains the meta-models and transformations

    If you have any questions, please contact Piotr Rygielski.


    Mailing List

    To stay updated on our tools, please subscribe to our descartes-tools mailing list (low traffic, only announcements related to our tools)
    Your E-mail address:
    Your Name (optional):

    DNI Publications

    Publication system is temporarily out of service!

    Hinweis zum Datenschutz

    Mit 'OK' verlassen Sie die Seiten der Universität Würzburg und werden zu Facebook weitergeleitet. Informationen zu den dort erfassten Daten und deren Verarbeitung finden Sie in deren Datenschutzerklärung.

    Hinweis zum Datenschutz

    Mit 'OK' verlassen Sie die Seiten der Universität Würzburg und werden zu Twitter weitergeleitet. Informationen zu den dort erfassten Daten und deren Verarbeitung finden Sie in deren Datenschutzerklärung.

    Kontakt

    Lehrstuhl für Informatik II (Software Engineering)
    Am Hubland
    97074 Würzburg

    Tel.: +49 931 31-86601
    E-Mail

    Suche Ansprechpartner

    Hubland Süd, Geb. M2